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Abstract: Capsule endoscopy of the gastrointestinal tract is an innovative technology that serves
to replace conventional endoscopy. Wireless capsule endoscopy, which is mainly used for small
bowel examination, has recently been used to examine the entire gastrointestinal tract. This method
is promising for its usefulness and development potential and enhances convenience by reducing
the side effects and discomfort that may occur during conventional endoscopy. However, capsule
endoscopy has fundamental limitations, including passive movement via bowel peristalsis and space
restriction. This article reviews the current scientific aspects of capsule endoscopy and discusses the
pitfalls and approaches to overcome its limitations. This review includes the latest research results on
the role and potential of capsule endoscopy as a non-invasive diagnostic and therapeutic device.

Keywords: capsule endoscopy; magnetic assisted capsule endoscopy; locomotion; diagnostic yield;
completion rate; retention; interpretation

1. Introduction

Since capsule endoscopy was introduced in the early 2000s, capsule endoscopy has
played an important role in evaluating small intestinal lesions [1]. Capsule endoscopy is
recommended as the first-line test for obscure gastrointestinal bleeding. It is effectively
used as a diagnostic tool for small bowel diseases such as Crohn’s disease, small bowel
tumor, celiac disease, unexplained abdominal pain, and diarrhea [2–4].

Compared to conventional endoscopy, capsule endoscopy is a less invasive examina-
tion method that does not require sedation during the examination process and reduces
the patient’s discomfort. In addition, it enables easy access to structures such as the small
intestine that were previously difficult to access.

Capsule endoscopy has continuously improved since it has been applied in clinical
practice [5–10]. However, there are still shortcomings that need to be addressed. (1) First,
the capsule endoscope cannot be positioned as intended by the examiner. (2) Unlike
conventional endoscopes, air cannot be adequately inflated, limiting sufficient observation
of the gastrointestinal tract. (3) Due to the device’s limitation in the form of a small pill,
effective optical technology cannot be easily applied. (4) The quality of the examination
is determined by the condition of the intestinal tract, such as poor bowel preparation or
air bubbles. (5) Procedures such as biopsy or hemostasis are not possible. (6) There is a
risk of capsule retention. (7) It takes considerable time and effort to interpret after the test
is performed.

2. Maneuverability
2.1. Magnetic Navigation System

One of the disadvantages of capsule endoscopy is the impossibility of operating the
device; therefore, it is difficult to observe by adjusting the field of view as desired. This
affects the overall miss rate of capsule endoscopy. The miss rates for small bowel tumors,
vascular disease, and ulcers were 18.9%, 5.9%, and 0.5%, respectively [11]. Efforts have
been made to overcome these shortcomings to reduce the overall miss rate.
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The application of magnetic fields in the medical field has long been practiced. Re-
cently, it has been applied and used in neurosurgery and the treatment of cardiac arrhyth-
mias [12,13]. Magnetic assisted capsule endoscopy (MACE) is an examination tool that
observes the gastrointestinal tract by control the location of the capsule endoscope swal-
lowed by the patient using a magnetic field in real-time. The magnetic field generated
outside the human body makes it possible to adjust a capsule endoscope equipped with a
permanent magnet or a magnetizable object using translational and rotational forces [14].
To date, several MACE systems have been developed (Table 1).

Table 1. Comparison of magnetically guided capsule endoscopy.

MiroCam Navi Navicam™ Stomach
Capsule System

Magnetic Maneuverable
Capsule

Magnetically Guided
Capsule Endoscopy

Company Intromedic, Seoul,
South Korea

Ankon Technologies,
Wuhan, China

Given Imaging,
Yoqneam, Israel

Siemens Healthcare,
Erlangen, Germany

and Olympus Medical
Corp, Tokyo, Japan

Type Hand-held magnetic
field generators

Robotic magnetic
capsule guidance

system

Hand-held magnetic field
generators

Multicoil guidance
system

Human application Yes Yes Yes N/A
Year 2013 2012 2010 2010

Commercially
available Yes Yes N/A N/A

FDA approval N/A Yes N/A N/A

N/A, not applicable.

2.1.1. Magnetic Maneuverable Capsule

In 2010, Swain et al. conducted a study to observe the esophagus and stomach by
administering MACE by modifying colon-type capsule endoscopy (Given Imaging Ltd.,
Yoqneam, Israel) [15] to the human body. The capsule endoscopy involved rare earth
magnetic materials and operated in an external magnetic field and transmitted images.
The weight of the capsule endoscope, including the magnet, was increased to 3.5–7 g.
An external paddle-shaped magnet was made to control the capsule in the human body
remotely, and it consisted of two rectangular plate-shaped magnets and a handle. The size
of the magnet was 100 × 100 × 30 mm. The capsule was manipulated in the esophagus
for 10 min, and movement or rotation was easy. In the stomach, moving, stopping, and
rotating the capsule from the pylorus to the esophageal–gastric junction was possible at
any site and did not cause any discomfort to the patient.

2.1.2. Magnetically Guided Capsule Endoscopy

In 2010, Siemens Healthcare and Olympus Medical Corp modified the capsule endo-
scope and developed a 31 × 11 mm MACE with a magnet inside [16]. The magnetically
guided capsule is steered by the steering system’s dynamic magnetic field and gradient.
The control system has a shape similar to that of a magnetic resonance imaging scanner,
and its approximate size is 1 × 2 m. It creates a magnetic field force of approximately
100 mT (milliteslas), and in reality, approximately 3–10 mT is used to control the capsule.

2.1.3. Magnetically Controlled Capsule Endoscopy System

This system consists of a capsule endoscope, a magnet-controllable robot, a data
storage device, and a computer workstation capable of real-time observation and steering
(Figure 1) [17]. The size of the capsule is 28 × 12 mm, and a permanent magnet is built-in.
The robotic system allows two rotational and three translational control degrees of freedom.
The capsule endoscope takes two pictures per second and transmits them to the data storage
device. The robotic system is a C-arm type system with an operating range of more than
50 × 50 × 50 cm. The magnetic field generated by the system is up to 200 mT or more. Liao
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et al. conducted a study comparing the diagnostic accuracy of conventional gastroscopy
and magnetically controlled capsule endoscopy (MCE) with 350 patients complaining
of abdominal discomfort [17]. The mean time to perform MCE was 26.4 ± 5.1 min, and
MCE detected gastric focal lesions in the whole stomach with sensitivity of 90.4% (95%
confidence interval, CI, 84.7%–96.1%), and specificity of 94.7% (95% CI, 91.9–97.5%), an
87.9% positive predictive value (95% CI, 81.7%–94.0%), a 95.9% negative predictive value
(95% CI, 93.4%–98.4%), and 93.4% accuracy (95% CI, 90.83%–96.02%).
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Figure 1. The magnetic-controlled capsule endoscopy system. (A) The NaviCam capsule endo-scope (Ankon Technologies
Co, Ltd., Wuhan, China); (B) the NaviCam magnetic control system. Adapted from Liao et al. [17] with permission from
Elsevier.

2.1.4. MiroCam Navi

MiroCam Navi is a simple system that uses a capsule endoscope and a hand-held
magnet to adjust the capsule (Figure 2). The capsule is manufactured by modifying the
microcam capsule endoscope for the small intestine. Image data are transmitted to the
receiver using electric field propagation, as in other microcam capsule endoscopes. The
size of the MiroCam Navi capsule is 25.5 × 10.5 mm, and the weight is 4.75 g. The length of
the hand-held magnet is 26 cm, the width of the handle is 3.5 cm, and the width of the head
is 6.5 cm. Ching et al. compared the diagnostic yield of MiroCam Navi and gastroscopy in
patients with suspected acute upper gastrointestinal bleeding [18]. A total of 33 patients
were included in the study. MiroCam Navi identified more localized lesions than EGD, but
the suspected lesions did not reach statistical significance. Capsule endoscopy revealed an
additional cause of small bowel bleeding (18%).
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2.2. Internal Locomotion System

Although capsule endoscopy technology has made remarkable progress, numerous
unavoidable shortcomings prevent the expansion of capsule endoscopy applications. For
example, capsule endoscopy cannot be observed by stopping at a certain area for diagnostic
or therapeutic purposes. It is also difficult to return to an area and re-observe. These
shortcomings can be overcome by adding a locomotion system to the capsule endoscope.
Several research groups have tried to develop a different type of locomotion system for
capsule endoscopy. However, it is still in the experimental laboratory stage because of
the complexity of the gastrointestinal tract and limited power [20–24]. The actuator is
important for propelling the capsule endoscope for an active capsule endoscope system.
There are three types of internal locomotion methods.

2.2.1. Inchworm-Like Capsule Endoscope

Researchers prefer the friction-based locomotion method because it is based on a
simple principle. The inchworm-like method works through three basic movements:
anchoring, elongating, and contraction [25]. This action is performed using an actuator
made of shape memory alloys (SMA). Cheung et al. presented a mechanism for locomotion
and stopping the capsule endoscope in the digestive tract [26,27]. Inspired by the beetle,
the authors used a micropatterned adhesive material of polydimethylsiloxane to generate
an attraction force between the intestine and the capsule endoscope (Figure 3). The capsule
with an inchworm-like mechanism can move back and forth by contracting and elongating
the capsule body by sequentially cooling and actuating the SMA wire.
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2.2.2. Paddle/Legged-Based Capsule Endoscope

Another commonly used friction force-based locomotion method is paddle-based
motion. This type of locomotion mechanism originates from canoe paddling. Several
paddles or legs are included in the capsule endoscope body, controlled by the actuator
and pushed backward on the gastrointestinal tract wall so that the capsule endoscope
moves forward. Kim et al. presented a paddling-based capsule endoscope and tested the
locomotion of active capsule endoscopy in vitro and in vivo (Figure 4) [22,24]. The loco-
motive capsule endoscope can easily move forward in the digestive tract by repeating this
paddling operation. Therefore, the paddle connected to the outer cylinder protrudes and
folds according to the direction in which the inner and outer cylinders are linearly operated
along the lead screw. A positional delay from the outer cylinder to the inner cylinder occurs
during linear motion owing to the gap between the inner and outer cylinders. As a result,
when multiple grooves in the inner cylinder push the end of the paddle relative to the right
or left, the paddle rotates at the pivot point for protrusion or folding.
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2.2.3. Hydrodynamic Force-Based Capsule Endoscope

Hydrodynamic force-based systems are widely used in the design and manufacture of
swimming robots. Therefore, several researchers have used this simple mechanism for the
locomotion of the capsule endoscope. Chen et al. worked on a swimming robot capsule
endoscope consisting of a steering head and rotational body (Figure 5) [25], divided into a
steering mode and a linear mode. A micro motor is used for linear motion, and when the
motor rotates, the spiral body rotates, and the capsule moves in a straight line. If the motor
is reversed, the capsule endoscope is moved backward. The steering part is activated by
the same motor.
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3. Air Insufflation

During capsule endoscopy, the intestinal tract is in a collapsed state, and it is difficult
to observe the entire intestinal mucosa through capsule endoscopy. In a conventional
endoscope, it is possible to observe the intestinal tract by injecting air to some extent, but
it is impossible to inject air with a capsule endoscope [28]. Gorlewicz et al. developed a
wireless insufflation capsule and performed ex vivo and in vivo animal experiments [29].
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The authors provided a means of injecting air with a wireless capsule platform, using
biocompatible effervescent chemistry to change the liquid and powder contained in the
capsule into gas. They performed experimental evaluation of the amount of gas required
to enhance the visualization and movement of the capsule and determined the amount
of gas produced from a particular amount of reactant. Pasricha et al. developed a new
wirelessly controlled CO2 insufflation system for use in colorectal capsule endoscopy
(Figure 6) [30]. The inflatable capsule has two separate compartments connected by a
magnetic valve. When triggered, the citric acid solution in the upper part reacts with the
sodium bicarbonate in the lower part to generate carbon dioxide. It is released through the
exhaust port in the center of the capsule. A permanent external magnet controls this action.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

3. Air Insufflation 
During capsule endoscopy, the intestinal tract is in a collapsed state, and it is difficult 

to observe the entire intestinal mucosa through capsule endoscopy. In a conventional en-
doscope, it is possible to observe the intestinal tract by injecting air to some extent, but it 
is impossible to inject air with a capsule endoscope [28]. Gorlewicz et al. developed a wire-
less insufflation capsule and performed ex vivo and in vivo animal experiments [29]. The 
authors provided a means of injecting air with a wireless capsule platform, using biocom-
patible effervescent chemistry to change the liquid and powder contained in the capsule 
into gas. They performed experimental evaluation of the amount of gas required to en-
hance the visualization and movement of the capsule and determined the amount of gas 
produced from a particular amount of reactant. Pasricha et al. developed a new wirelessly 
controlled CO2 insufflation system for use in colorectal capsule endoscopy (Figure 6) [30]. 
The inflatable capsule has two separate compartments connected by a magnetic valve. 
When triggered, the citric acid solution in the upper part reacts with the sodium bicar-
bonate in the lower part to generate carbon dioxide. It is released through the exhaust port 
in the center of the capsule. A permanent external magnet controls this action. 

 
Figure 6. The insufflation capsule with two sections. (A) magnetic valves make a tight barrier be-
tween the compartments; (B) when activated with a permanent external magnet, the valves open to 
permit a mixture of the two reactants, releasing carbon dioxide. Adapted from Pasricha et al. [30] 
with permission from Thieme. 

4. Visibility for the Diagnostic Ability 
4.1. Upgrade of a Capsule Endoscope Device 

The capsule endoscope system consists of a capsule for imaging, a device for receiv-
ing and storing data, a computer, and software. The pill-shaped capsule consists of a light 
source, a lens, a battery, and a transmission device. Capsule endoscopy can be used to 
observe the esophagus, stomach, small intestine, and large intestine. The capsule endo-
scope consists of (1) an optical dome, (2) lens, (3) light source, (4) image sensor, (5) battery, 
(6) transmitter, and (7) antenna. 

The optical dome is made of hemispherical plastic in front of the capsule endoscope. 
There is an appropriate distance between the dome and the internal camera to observe the 
digestive tract with the mounted camera. The lens uses a single-focal lens with a small 
aperture. Light-emitting diodes are used as light sources to illuminate the inside of the 

(A) 

(B) 

Figure 6. The insufflation capsule with two sections. (A) magnetic valves make a tight barrier
between the compartments; (B) when activated with a permanent external magnet, the valves open
to permit a mixture of the two reactants, releasing carbon dioxide. Adapted from Pasricha et al. [30]
with permission from Thieme.

4. Visibility for the Diagnostic Ability
4.1. Upgrade of a Capsule Endoscope Device

The capsule endoscope system consists of a capsule for imaging, a device for receiving
and storing data, a computer, and software. The pill-shaped capsule consists of a light
source, a lens, a battery, and a transmission device. Capsule endoscopy can be used
to observe the esophagus, stomach, small intestine, and large intestine. The capsule
endoscope consists of (1) an optical dome, (2) lens, (3) light source, (4) image sensor,
(5) battery, (6) transmitter, and (7) antenna.

The optical dome is made of hemispherical plastic in front of the capsule endoscope.
There is an appropriate distance between the dome and the internal camera to observe the
digestive tract with the mounted camera. The lens uses a single-focal lens with a small
aperture. Light-emitting diodes are used as light sources to illuminate the inside of the
digestive tract. Metal oxide silicon imagers use micropower to operate in low light and
have many circuits integrated into a small chip.

The first capsule endoscopy system was produced by Given Imaging (Yokneam,
Israel). The third-generation model PillCam SB3 (Medtronic, Washington, DC, USA) is
currently used as a capsule endoscope for the small intestine. In addition, Mirocam
(Intromedic, Seoul, Korea), CapsoCam (CapsoVision, Saratoga, CA, USA), EndoCapsule
(Olympus, Tokyo, Japan), OMOM capsule (Jinshan Science and Technology, Chongqing,
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China) were used (Table 2). Various capsule endoscopes have been developed and used in
clinical practice, but direct comparative studies on the diagnostic performance of capsule
endoscopes developed by various companies have not been reported.

The first-generation PillCam SB capsule endoscope measures 11 × 26 mm, and both
the second and third generations have the same size (Figure 7) [31,32]. The PillCam SB
capsule endoscope takes two pictures per second and has a viewing angle of 140◦. The
second- and third-generation PillCam SB capsule endoscopes have an extended viewing
angle of 156◦, automatic light control, higher resolution cameras, and 12 h battery life.

Figure 7. Pillcam Capsule endoscopy (image courtesy of Medtronic).

Intromedic (Seoul, Korea) released the MiroCam. Other capsule endoscope models
use radiofrequency transmission for image transmission, but MiroCam uses human body
communication to transmit information. This technology can record videos for a longer
period through finer power consumption. MiroCam measures 10.8 × 25.4 mm, has a
viewing angle of 170 degrees, takes 3–6 pictures per second, and has a battery life of 12 h.

Introduced by CapsoVision (USA) in 2013, CapsoCam can store captured images in
the capsule endoscope, eliminating the need to carry external receivers and storage devices
during the examination period. In addition, CapsoCam provides a 360-degree panoramic
view with four cameras arranged at 90◦ in the middle of the capsule on the side, unlike the
existing capsule endoscope with a camera at the end of the capsule. CapsoCam SV-1 can
take 12–20 photos per second and store the images in the capsule itself. However, there is a
disadvantage in that it is necessary to find a capsule endoscope in the patient’s stool after
examination and check the image taken.

Table 2. Currently available capsule endoscopy.

Capsule
Endoscopy PillCam SB3 MiroCam CapsoCam SV-1 Endocapsule 10 OMOM Capsule2

Company Medtronic IntroMedic CapsoVision Olympus Jinshan Science
and Technology

Size (mm) 11 × 26 11 × 25 11 × 31 11 × 26 11 × 25
Weight (g) 3.0 3.25–4.70 3.8 3.3 4.5

Camera lens (n) 1 1 4 1

Data transmission Radiofrequency
communication

Human body
communication N/A Radiofrequency

communication
Radiofrequency
communication

Battery life (h) 11 12 15 12 10
Frame rate
(frames/s) 2–6 3–6 12–20 2 2–6

Field of view
(degree) 156 170 360 160 165

US FDA approval Yes Yes Yes Yes No

FDA, Food and Drug Administration.
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4.2. Non-White Light Imaging

White light imaging (WLI) is currently used as the principal technology in the clinical
practice of capsule endoscopy. Despite recent advances in endoscopic imaging technology,
capsule endoscopy has limitations in using these technological improvements. The clinical
usefulness of WLI capsule endoscopy has motivated research groups to improve integrated
diagnostic capability with other sensing methods. These advancements have made it
possible to overcome the drawbacks of WLI capsule endoscopy through enhanced detection
of gastrointestinal pathologic lesions, such as microlesions, subepithelial lesions, and
transmural pathology.

To overcome the limitations of WLI, alternative imaging technologies, such as chro-
moendoscopy and narrow-band imaging (NBI), have been developed [33,34]. With NBI,
mucosal surface patterns and superficial capillaries were observed more clearly, and blood
vessels appeared black with increasing hemoglobin absorption [35]. NBI is widely used in
clinical practice and actively applied to wireless capsule endoscopy in laboratory device
manufacturing research [36,37]. With the routine application of endoscopic ultrasonogra-
phy, the application of ultrasound to the capsule endoscope has been considered a necessary
step to improve the diagnostic ability of the capsule endoscope beyond the optical image.
Ultrasound capsule endoscopy (USCE) is still in its infancy, but several research teams are
developing it [38–40]. Qiu et al. investigated a mechanical method using a single-element
transducer powered by a vibration motor that enables radial imaging of the bowel wall
(Figure 8) [41]. The frequency of the transducer plays an important role in USCE, affecting
penetration depth and image resolution.
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Figure 8. Illustration of ultrasound capsule. (A) (a) A mirror for ultrasound reflection. (b) Circular array transducer-based
system. (c) A solenoid coil for rotating the transducer. (d) A micro-motor for rotating the transducer for circular imaging;
(B) cross-sectional ultrasound image of a porcine esophagus. Adapted from Qui et al. [41] with permission from Elsevier.

Research to integrate autofluorescence imaging into capsule endoscopy has been con-
ducted by developing several prototype imaging devices [42–44], and research on applying
volumetric imaging technology to capsule endoscopy using optical coherence tomography
is also being conducted [45,46]. In addition, in terms of biophysical measurements, studies
are being conducted to measure temperature [47,48], motility [49–51], slow wave [52], and
pH [53,54] using capsule endoscopy.

4.3. 3D Reconstruction

One of the major drawbacks of capsule endoscopy is that it is difficult to accurately
measure the lesion’s size. In addition, since capsule endoscopy is difficult to manipulate
and inflate air, it is problematic to identify polyps or excavated lesions. To solve this
problem, 3D reconstruction of capsule endoscope images has been attempted to obtain
more information using current capsule endoscope images [55–58]. Koulaouzidis et al.
presented a feasibility study of 3D representation software for image enhancement. They
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used a single image to investigate the accuracy of the software-based 3D reconstruction
and the potential for 3D reconstruction to enhance the visualization of CE lesions. Three-
dimensional reconstruction is desirable for CE image reviews.

Software methods, including shape-form-shading, have been used to reconstruct the
3D structure of the small bowel [59,60]. The software approach has the basic limitation of
estimating accurate and powerful 3D information without adding new image information.
Although this tool has shown how useful it is in analyzing capsule images, it has limited
clinical significance owing to its fundamental limitations.

Nam et al. presented a new stereo camera-based capsule endoscope (Figure 9) [61].
The device consisted of two cameras displaced by approximately 4 mm and four LED lights.
The weight and size were comparable to those of commercially available MiroCam® capsule
endoscopes. The census-based Hamming distance and absolute difference of intensities
were used for stereo matching [62]. The authors evaluated the functioning and safety of the
new capsule. In addition, the usefulness of 3D rendering and size measurement functions
was assessed in each patient’s clinical setting.

Figure 9. Stereo camera-based capsule endoscopy. (A) Illustration of MC4000 (IntroMedic® Co., Seoul, Korea); (B) images
detected by MC4000. A1, B1, and C1 present conventional capsule images (A1: subepithelial lesion, B1: ulcer of Crohn’s
disease, and C1: polypoid lesion). A2, B2, and C2 show the 3D reconstructions of the conventional images. A3, B3, and C3
present an estimation of the lesion size. Adapted from Nam et al. [61] with permission from Springer Nature.

5. Bowel Preparation

During capsule endoscopy, the diagnostic yield is reduced when food remains or air
bubbles are present in the small intestine. Therefore, it is important to perform proper bowel
preparation and reduce bubbles in the intestine before performing capsule endoscopy [63].
Studies have been performed to increase the completion rate, small bowel visualization
quality, and diagnostic yield of CE [64,65]. Although there are conflicting results of bowel
preparation studies on capsule endoscopy, it has been reported that bowel preparation
using PEG effectively improves the resolution and diagnostic rate of capsule endoscopy [65].
According to a meta-analysis of the literature on bowel preparation, use of a laxative
containing PEG solution and sodium phosphate improved small bowel disease resolution
and diagnosis rate. In bowel preparation for capsule endoscopy, when comparing 2 and
4 L, there is no difference in image resolution, diagnostic rate, or complete examination
rate of the study; therefore, it is generally recommended to administer PEG 2 L.

The use of simethicone reduces intestinal bubbles and increases the resolution of
capsule endoscopy. Wu et al. conducted a literature-based meta-analysis and significantly
improved the resolution of the capsule endoscope in the group administered with laxa-
tives and simethicone (OR 2.84, 95% CI 1.74–4.65, p = 0.00) [66]. Therefore, concurrent
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administration of simethicone during bowel preparation for capsule endoscopy is generally
recommended [67].

In a meta-analysis of the literature analyzing the effect of administration of proki-
netics during capsule endoscopy on the diagnostic yield and completion rate of capsule
endoscopy, metoclopramide showed definitive test in complete test rate compared to the
control group (OR 2.8, 95% CI 1.35–3.21), and there was no difference in diagnosis rate [68].
Therefore, in patients with risk factors, prokinetics can be selectively used.

6. Abilities of Procedure
6.1. Biopsy

Another disadvantage of capsule endoscopy is that it is impossible to perform a pro-
cedure for diagnosis and treatment that can be performed with a conventional endoscope,
such as a biopsy. Several issues need to be addressed for biopsy using capsule endoscopy:
(1) approaching the lesion for biopsy, (2) inserting a knife or needle for biopsy of the lesion,
(3) performing biopsy, and (4) retrieval of a biopsy specimen. Simi et al. presented a
magnetic torsion spring mechanism using a cutting tool [69]. This device performed a
histological examination using two circular cutting knives (Figure 10). In the absence of an
external magnetic field, the cutting chamber was closed. When an external magnetic field
was applied, the ring-shaped knife was aligned in the direction of the external magnetic
field, and the chamber opened. After removing the external magnetic field, the chamber
was closed, and the tissue material was obtained and placed in the chamber. Kong et al.
presented a rotational micro-biopsy device using a rotational tissue-cutting razor with a
strained spring [70]. This device works by releasing the strained spring near the lesion to
obtain tissue and storing it in the chamber.
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Figure 10. Magnetic torsion spring mechanism for a wireless biopsy capsule. (a) Magnetic field
applied to bring the device closer to the lesion; (b) biopsy process; (c) storage of biopsy material.
Adapted from Koprowski et al. [71] with permission from BMC.

6.2. Hemostasis

Valdastri et al. developed a novel wireless device that can perform hemostasis at a
particular position using external adjustment by attaching a surgical clip (over−the−scope
clip) (Figure 11) [72]. A surgical clip was attached to the distal end of the capsule endoscope,
and it was made of nitinol, a biocompatible superelastic SMA. Ex vivo tests were repeated
to test all the functions of the therapeutic capsule in terms of clip release efficiency and
remote control reliability.
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(d) capsule before the release of the clip; (e) deployment of the clip; (f) capsule without the clip.
Adapted from Valdastri et al. [72] with permission from Thieme.

Leung et al. proposed an inflatable prototype capsule for hemostasis of the gastroin-
testinal tract via the balloon tamponade effect [73]. The device was composed of three
segments connected by flexible joints. The capsule diameter was 14 mm and was sur-
rounded by silicone rubber balloons. It inflates around hemorrhagic lesions and achieves
hemostasis via the tamponade effect. Balloon inflation consists of generating gas by inject-
ing acid into a space filled with base powder.

7. Retention

Capsule retention is a rare but important complication of capsule endoscopy. Capsule
retention is a case in which capsules cannot be ejected for 2 weeks after administration
or an intestinal obstruction occurs and surgery is required. To prevent the risk of capsule
retention, a patency capsule was developed [74]. Patency capsules are made of soluble and
biocompatible materials. Good patency of the intestinal tract can be checked before capsule
endoscopy, and helpful information can be provided before capsule endoscopy if stenosis
is suspected.

8. Interpretation
8.1. Software Upgrade

Capsule endoscopy is a convenient examination method for patients, but checking
more than 50,000 images is time-consuming. After completing the capsule endoscopy,
the image records stored by connecting an external storage device to the computer were
analyzed and read using the software program provided by the company. The image
reading program tracks the location of the intestinal tract and has a function to view
continuous images from multiple sides at the same time, an enlargement function, and a
function to detect bleeding and vascular suspicious lesions automatically. New functions
are continuously being added (Table 3). The reading time varies depending on the reader’s
experience or the type of lesion and usually takes 30 min to 2 h. Reading requires experience,
and research into shortening the reading time and increasing the accuracy of diagnosis of
lesions using artificial intelligence continues.
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Table 3. Comparison of software specifications.

Rapid V 8.0 MiroView 4.0

Software mode

Suspected blood
indicator

Video function for a quick
review of suspected
hemorrhagic lesions

Express view

A function that helps the
reading by filtering out
overlapping images and

images of less importance
among recorded images

QuickView

Ability to play clinically
important images to

provide quick preview and
location

SGIB
A function to help the
reading of suspected

bleeding lesions

Complementary
QuickView

A mode that plays back
videos not provided in

QuickView mode.

8.2. Artificial Intelligence

Recently, with the development of artificial intelligence, several researchers have
reported the potential application of convolutional neural network (CNN) systems to
diagnose various small bowel lesions. The application of this artificial intelligence capsule
endoscope will reduce the time required for capsule endoscope interpretation. With the
development of deep learning algorithms, the CNN, which obtains specific characteristics
by polling and convolutional layers and performs back-propagation to create the best
feature map, has become the main deep learning algorithm for image analysis [75,76].
Aoki et al. presented a study for finding mucosal erosion and ulcers with a CNN-based
program and manually annotated more than 5000 capsule endoscopy images [77]. This
program model presented promising functioning with an area under the receiver-operating
characteristic curve (AUROC) of 0.958, an accuracy of 90.8%, a sensitivity of 88.2%, and a
specificity of 90.9%.

Klang et al. presented a CNN model for detecting ulcers in Crohn’s disease using
17,000 capsule endoscopy images [78]. This CNN model using 5-fold cross-validation
showed an AUROC of 0.99, an accuracy of 96.7%, a sensitivity of 96.8%, and a specificity of
96.6%.

Saito et al. developed a CNN model with 30,584 images to detect and classify pro-
truding lesions [79]. This model presented an AUROC of 0.911, a sensitivity of 90.7%, and
a specificity of 79.8%. For classification, sensitivities of 86.5%, 92.0%, 95.8%, 77.0%, and
94.4% were noted for polyps, nodules, epithelial tumors, submucosal tumors, and venous
structures, respectively.

9. Conclusions

Wireless capsule endoscopy has become a routine examination in clinical practice for
investigating the gastrointestinal tract. Although capsule endoscopy has several limitations,
studies by several researchers to overcome these shortcomings are ongoing. For more
effective technological advancement, both engineers and clinicians need to participate.

The usefulness of capsule endoscopy is emphasized because it is less invasive and is
convenient during the procedure. Such usefulness will become more prominent over time.

Studies to overcome the limitations of capsule endoscopy are meaningful separately;
however, they will eventually be integrated into one to bring about greater synergy. How-
ever, most of the technological advances described above are still in their infancy, and
thus it is necessary to verify the efficacy of technological advances through the human
application.
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